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Abstract

Perpetual voting is a framework for long-term collective de-
cision making. In this framework, we consider a sequence
of subsequent approval-based elections and try to achieve a
fair overall outcome. To achieve fairness over time, perpet-
ual voting rules take the history of previous decisions into
account and identify voters that were dissatisfied with previ-
ous decisions. In this paper, we look at perpetual voting rules
from an axiomatic perspective. First, we define two classes
of perpetual voting rules that are particularly easy to explain
to voters and we explore the bounds imposed by this simplic-
ity. Second, we study proportionality in the perpetual setting
and identify two rules with strong proportionality guarantees.
However, both rules yield different guarantees and we prove
them to be incompatible with each other.

Introduction
In many voting scenarios, a group of voters, for example a
committee or working group, has to make several decisions
at different points in time. If standard voting rules are used
(such as approval, Borda, plurality, etc.), it may happen that
a majority dictates all decisions while some voters disagree
with every outcome. This can lead to unrepresentative re-
sults and, eventually, to dissatisfied voters dropping out of
the decision process. Such situations are particularly unde-
sirable if participation in the process is valued highly and
if no extreme views are present in the electorate. If a group
of colleagues has to regularly agree on a meeting time, it
is not acceptable if always the same colleague has to com-
promise. Similarly, if a committee of volunteers in a sports
club is tasked with the organization of a party, no committee
member’s opinion should be completely ignored.

Perpetual voting, recently introduced by Lackner (2020),
is a formalism for tackling these types of long-term deci-
sion making processes. From a formal point of view, a per-
petual voting instance is a sequence of approval-based elec-
tions where each decision has to be made ‘online’, i.e., in
the knowledge of past decisions but without information
about future elections. Perpetual voting rules are determin-
istic, resolute functions that take perpetual voting instances
as input and that output a winning alternative for the cur-
rent decision to be made. Lackner (2020) introduced several
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perpetual voting rules that aim to achieve a fairer outcome
over time as well as basic axioms that formalize desirable
properties in the perpetual setting. However, as of now, it
was unclear which perpetual rules provide proportional out-
comes, i.e., outcomes that reflect the opinions of both large
and small groups in a proportional fashion.

Our main goal in this paper is to close this gap and study
proportionality in the setting of perpetual voting. This is
more difficult than, e.g., proportionality in multi-winner vot-
ing (Aziz et al. 2017; Sánchez-Fernández et al. 2017) due to
the sequential and dynamic nature of perpetual voting. The
main technical difficulty is that voters’ preferences (and the
set of alternatives) are different each round. Additionally,
the online character of perpetual voting prohibits standard
methods of (offline) optimization. Despite these obstacles,
proportionality is clearly desirable in perpetual voting as it
strikes a balance between majoritarian decisions (ignoring
minorities) and consensus-based decision (which may result
in disproportional power for individuals).

Our starting point, however, is a much more modest
desideratum of voting rules: ideally, they should be simple
to explain and understand. Thus, we consider two classes
of particularly simple perpetual voting rules: win-based
and loss-based weighted approval methods (WAMs). Both
classes have the advantage of a rather simple definition
based on voter weights, which are modified depending on
whether a decision was in favour of the voter. Importantly,
we require that the magnitude of a change in voter weights
is not depending on other voters, i.e., it is always apparent to
voters how an outcome influences their weight. We start our
analysis by considering two axioms from Lackner (2020):
(i) bounded dry spells guarantee each voter a satisfying out-
come on a regular basis, and (ii) simple proportionality is
a weak proportionality requirement. Our results show that
no voting rule in these two classes can satisfy bounded dry
spells. In addition, we characterize all voting rules that sat-
isfy simple proportionality.

This sets the stage for our analysis of proportionality. We
introduce two proportionality axioms in the perpetual set-
ting: lower and upper quota for closed groups. In contrast
to simple proportionality, these axioms are applicable in dy-
namic settings with changing preferences. Our first result is
a negative one: while some win-based WAMs satisfy simple
proportionality, none of them satisfies one of the stronger



properties. Thus, we turn to two more complex perpetual
voting rules: Perpetual Consensus (introduced by Lackner
2020) and Perpetual Phragmén (new to the perpetual setting,
based on Phragmén 1895). We prove that Perpetual Consen-
sus satisfies the upper quota axiom and Perpetual Phragmén
the lower quota axiom. In addition, both rules have bounded
dry spells. Finally, we show that Perpetual Phragmén sat-
isfies perpetual priceability, an axiom based on work in
the multi-winner setting by Peters and Skowron (2020). We
prove that this axiom implies the lower quota axiom, but it is
incompatible with the upper quota axiom. Thus, we see that
Perpetual Phragmén and Perpetual Consensus adhere to two
fundamentally incompatible proportionality requirements.

Related work In the last few years, the study of long-
term (or repeated) collective decision making has received
growing attention. This includes the work of Freeman, Za-
hedi, and Conitzer (2017), who proposed a sequential mech-
anism for the aggregation of utility functions over time with
the goal to maximize long-term Nash welfare. Variants of
this formalism have been studied by Conitzer, Freeman, and
Shah (2017) and Freeman et al. (2018). Additionally, Bul-
teau et al. (2021) studied an offline variant of perpetual
voting, focussing on proportionality guarantees achievable
in this setting. Notably, this work contains an experimen-
tal evaluation of perpetual voting with human participants.
Lackner, Maly, and Rey (2021) studied a perpetual version
of participatory budgeting. Other approaches that consider
either temporal aspects of voting or sequences of decisions
include storable votes (Casella 2005, 2012), sequential vot-
ing rules (Lang and Xia 2009), online approval elections (Do
et al. 2022), Frege’s method (Frege 2000; Harrenstein, Lack-
ner, and Lackner 2020), and dynamic fair division (Kash,
Procaccia, and Shah 2014; Benade et al. 2018; Zeng and
Psomas 2020).

The Perpetual Voting Framework
We will now introduce the perpetual voting formalism, as
defined by Lackner (2020), alongside necessary basic defini-
tions. Let N “ t1, . . . , nu be a set of voters (agents). Given
a set of alternatives C, we assume that each voter v P N
approves some non-empty subset of C. An approval profile
A “ pAp1q, . . . , Apnqq for C is an n-tuple of subsets of C,
i.e., Apvq Ď C for v P N . We call the triple pN,A,Cq a
decision instance.

A k-decision sequence D “ pN, Ā, C̄q is a triple con-
sisting of a set of voters N , a k-tuple of sets of alterna-
tives C̄ “ pC1, . . . , Ckq and a k-tuple of approval profiles
Ā “ pA1, A2, . . . , Akq such that Ai is an approval profile
for Ci. Thus, for 1 ď i ď k, the triple pN,Ai, Ciq is a deci-
sion instance and can be seen as an individual decision to be
made; we refer to it as the decision instance in round i.

We write w̄ P C̄ as a short hand for w̄ P
Śk

i“1 Ci, i.e.,
w̄ “ pw1, . . . , wkq satisfies wi P Ci for i P t1, . . . , ku; we
refer to w̄ as a k-outcome. This tuple represents the chosen
alternatives in rounds 1 to k. If we combine a k-decision
sequence pN, Ā, C̄q and a k-outcome w̄ P C̄, we speak of
a k-decision history H “ pN, Ā, C̄, w̄q, which can be seen
as the history of past decision instances alongside the made

choices. We thus know, for any i ď k, that in case of decision
instance pN,Ai, Ciq alternative wi was chosen.

An important statistic of k-decision histories is the sat-
isfaction of each voter: Given a decision history H “

pN, Ā, C̄, w̄q, the satisfaction of voter v P N with w̄ in
round k is satkpv, w̄q “ |t1 ď i ď k : wi P Aipvqu|. Thus,
the satisfaction of a voter is the number of past decisions
that have satisfied this voter. Note that although satisfaction
clearly depends on H, we do not explicitly mention that in
the notation as H will always be clear from the context. The
same holds for other definitions throughout the paper.

Example 1. As an example, consider the following 4-
decision sequence with four voters N “ t1, . . . , 4u and four
alternatives a, b, c, d (the same in all rounds):

voters
1 2 3 4

ro
un

ds

A1 tau tau tbu tc, du
A2 tau ta, b, cu tdu tcu
A3 tau tb, cu ta, cu tbu
A4 tau tbu tcu tdu

If we assume that we always select the alternative with
the highest number of approvals and use alphabetic tie-
breaking, then a wins in all rounds. The corresponding 4-
outcome is w̄ “ pa, a, a, aq. This means voter 1 is satisfied
with every decision (sat4p1, w̄q “ 4) while 4 does not agree
with any decision (sat4p4, w̄q “ 0).

Assume that a group of voters N wants to take a deci-
sion and looks back at k decisions already taken. That is, we
are presented with a k-decision history H “ pN, Ā, C̄, w̄q
and a decision instance pN,Ak`1, Ck`1q. The question now
is which alternative in Ck`1 should be chosen, subject to
the preferences in Ak`1 and under consideration of H. An
(approval-based) perpetual voting rule R is a function that
maps a pair of a decision instance pN,Ak`1, Ck`1q and a
k-decision history H to an alternative in Ck`1.

Given a k-decision sequence D “ pN, Ā, C̄q, we write
RpDq to denote the k-outcome w̄ P C̄ which is se-
lected by applying the perpetual voting rule R in every
round, that is, RpDq “ w̄ is inductively defined by wi “
RpN, pA1, . . . , Aiq, pC1, . . . , Ciq, pw1, . . . , wi´1qq for i ď
k. We expect perpetual voting rules to be resolute, i.e., re-
turn exactly one winning alternative, therefore we require a
tie-breaking order to resolve ties. Throughout the paper, we
assume that there exists some arbitrary and fixed order for
each set of alternatives that settles ties.

Perpetual Voting Rules
Let us now introduce the perpetual voting rules that we
will study in this paper. All of these rules except Perpetual
Phragmén have been introduced by Lackner (2020).

First, we consider a natural approach to define perpet-
ual voting rules via weights: voters that have been previ-
ously neglected receive a higher weight, voters that are sat-
isfied with previous outcomes receive a lower weight. In
each round, the alternative that receives the highest sum
of weighted approvals is selected. This idea is captured
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in a broad sense by the class of perpetual weighted ap-
proval methods1 (WAMs), which contains most rules pro-
posed in (Lackner 2020). These approval-based perpetual
voting rules are defined as follows: Each voter has an as-
signed positive weight, which may change each round; a
larger weight corresponds to being assigned a higher im-
portance. Let αkpvq denote voter v’s weight in round k.
Weights are initialized with α1pvq “ 1 for all v P N . The
weights of voters in the following rounds are a consequence
of the previous history. Formally, there exists a weight func-
tion h such that for all v P N , αk`1pvq “ hpv,Hq.
Given a k-decision history H “ pN, Ā, C̄, w̄q and a deci-
sion instance pN,Ak`1, Ck`1q, the rule selects an alterna-
tive wk`1 P Ck`1 with maximum weighted approval score.
That is, the score of an alternative c is defined as

sck`1pcq “
ÿ

vPN with cPAk`1pvq

αk`1pvq.

Observe that WAMs can be computed in polynomial time
as long as the function h is computable in polynomial time.
This holds for all WAMs considered in this paper.

In this paper, we consider two subclasses subclasses of
WAMs: win-based and loss-based WAMs. These have the
benefit of a particularly straight-forward way of calculating
weights and thus can be easily explained to voters. For both
types, a voter’s weight depends only on the voter’s weight in
the previous round and whether the voter was satisfied with
the previous decision. For win-based (loss-based) WAMs,
the weights only change for voters who approved (did not
approve) a winning alternative. Win-based WAMs can be
seen as the perpetual equivalent of the well-known class
of the (sequential) Thiele methods used in multi-winner
voting (Lackner and Skowron 2023). Similarly, loss-based
WAMs are related to dissatisfaction counting rules (Lackner
and Skowron 2018).
Definition 1. We call a WAM loss-based if the weights of
voters v P N can be computed as follows:

αk`1pvq “

"

αkpvq if wk P Akpvq,
fpαkpvqq if wk R Akpvq,

where f : RÑ R is a function satisfying fpxq ě x.
We call a WAM win-based if the weights of voters v P N

can be computed as follows:

αk`1pvq “

"

gpαkpvqq if wk P Akpvq,
αkpvq if wk R Akpvq,

where g : RÑ R is a function satisfying 0 ă gpxq ď x.

We require gpxq ą 0 for win-based WAMs as other-
wise the voter’s weight would remain at 0 since it never
increases (gpxq ď x and fpxq “ x). Observe that, while
the function f resp. g can be arbitrarily complex, by defi-
nition, the weight of a voter in a win-based WAM only de-
pends on how many rounds she has already won (i.e., how
many rounds she was satisfied with). Similarly, the weight

1We note that WAMs in this paper are defined slightly more
general than in (Lackner 2020).

of a voter in a loss-based WAM only depends on how many
rounds she already lost. In particular, this means that a win-
or loss-based WAM is fully defined by an infinite sequence
pGp0q, Gp1q, Gp2q, . . . q such that Gpiq is the weight of a
voter that has won resp. lost i rounds. In this sense, we be-
lieve that win- and loss-based WAMs are simple to explain
and understand. The simplest example of a WAM is approval
voting (AV), which completely ignores the history of past
decisions.

AV. AV is the win-based WAM with gpxq “ x.
Observe that AV is also a loss-based WAM with fpxq “ x

and thus the unique rule that is win-based and loss-based.
The next method is inspired by Proportional Approval Vot-
ing and is thus based on the harmonic series.

Perpetual PAV. Perpetual PAV is a WAM defined by the
following weight function:

αk`1pvq “
1

satkpv, w̄q ` 1
“

#

αkpvq
αkpvq`1 if wk P Akpvq,
αkpvq if wk R Akpvq.

The last equality shows that Perpetual PAV is indeed a win-
based WAM.

An example of a loss-based WAM is Perpetual Unit Cost
(Lackner 2020), where the weight of dissatisfied voters is
increased by 1.

Perpetual Unit-Cost. Perpetual Unit-Cost is a loss-based
WAM defined by fpxq “ x` 1.

Next, we define two more complicated rules, Perpetual
Consensus, introduced by Lackner (2020), and Perpetual
Phragmén, a new rule based on Phragmén’s sequential rule.
As we will see later in Section , both of them can be viewed
as proportional—but each in a different sense.

Perpetual Consensus. Let wkpvq be the weight of voter
v P N in round k. Each voter starts with a weight of
w0pvq “ 1{n. This WAM is based on the idea that the
weight of voters that are satisfied with a decision is re-
duced in total by 1 and this number is divided equally among
them. Consequently, voters can have negative weights2; vot-
ers with negative weights are not taken into account when
determining the winning alternative. After each decision, the
weight of all voters is increased by 1{n. Formally, N`k pcq “
tv P N : c P Akpvq and αkpvq ą 0u, for all v P N , α1pvq “
1{n and

αk`1pvq “

#

αkpvq `
1
n ´

1
|N`k pwkq|

if wk P Akpvq,

αkpvq `
1
n if wk R Akpvq,

Thus, the score of an alternative c is defined as

sck`1pcq “
ÿ

vPNk`1pcq

maxp0, αk`1pvqq.

Finally, Perpetual Phragmén is a new perpetual rule and
is not a WAM. It is inspired by Phragmén’s Sequential Rule
(Phragmén 1894; Brill et al. 2017).

2Although negative weights are not allowed in the definition of
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Perpetual Phragmén. This rule can be described as a load
distribution procedure. We assume that winning a round in-
curs a load of 1, which is distributed to a set of voters that
jointly approve the winning alternative. Let `kpvq denote the
load assigned to voter v in rounds 1 to k (`1pvq “ 0). In
round k ` 1, for each set of voters N 1 that jointly approves
at least one alternative (

Ş

vPN 1 Ak`1pvq ‰ H), we calculate

`k`1pN
1q “

1`
ř

vPN 1 `kpvq

|N 1|
;

this is the load that each of voter in N 1 would bear if
they were selected to choose the winning alternative. We
then select a group N 1 for which `k`1pN

1q is minimal. If
more than one set of voters exists with minimal `k`1pN

1q,
then one of these sets is chosen according to an arbitrary
tie-breaking order. Finally, a winning alternative is chosen
from

Ş

vPN 1 Ak`1pvq, which is non-empty by the definition
of N 1, according to another arbitrary tie-breaking order. Let
N 1 be the set of voters selected to choose an alternative.
Then the loads in the next round are defined as

`k`1pvq “

"

`kpvq if v R N 1,
`k`1pN

1q if v P N 1.

Conceptually, Perpetual Consensus and Perpetual
Phragmén have an important similarity: both are based on
distributing a cost (load) of 1 to all voters approving the
winning alternative. They differ, however, in the way they
distribute this cost. Perpetual Consensus strictly enforces an
equal distribution; Perpetual Phragmén assigns a lower load
to voters that already have a high load.
Example 2. Consider the instance from Example 1. In the
first round we can distribute the load of a between both of its
supporters 1 and 2. This leads to a load distribution where
1 and 2 have load 0.5 while 3 and 4 have load 0. This is
clearly better than placing all the load of an alternative on
one voter. Hence a wins in round 1. In round 2, both a and
c have two supporters. However, due to the higher previ-
ous load of the supporters of a, selecting c leads to a more
favourable load distribution, where the load of 1 and 3 re-
mains the same at 0.5 and 0 respectively. Moreover, the load
of 2 and 4 is set to 1`0.5

2 “ 0.75. In round 3, all alternatives
have two supporters, but the supporters of a have the lowest
previous load, hence it is selected. This leads to a load distri-
bution where all voters have the same load of 0.75. Finally,
in round 4 all voters have the same load and all alternatives
are supported by exactly one voter. Hence all alternatives
would lead to a equally good load distribution. We select
some alternative according to a fixed tie-breaking order.
Proposition 1. Perpetual Phragmén is not equivalent to any
WAM and is computable in polynomial time.

We note that the Method of Equal Shares (Peters and
Skowron 2020), a multi-winner voting rule closely related to

WAMs, the definition can easily be adapted to that framework by
defining a voting rule that assigns the same weights as Perpetual
Consensus if αkpvq is positive and 0 otherwise. Moreover, observe
that compared to Lackner (2020), we divided all weights by n to
highlight the similarity to Perpetual Phragmén.

Phragmén’s Sequential Rule with even stronger proportion-
ality guarantees, has no obvious counter-part in perpetual
voting. This is because it requires a priori knowledge about
the number of rounds and it is not committee monotone.

Win- and Loss-Based Voting Rules
First, we want to investigate under which conditions win-
and loss-based perpetual voting rules can be proportional.
To do so, we first consider simple proportionality, a basic
axiom proportionality axiom introduced by Lackner (2020).

Simple proportionality considers groups of voters that
have identical preferences and guarantees them a propor-
tional representation, at least in very simple perpetual voting
instances.
Definition 2 (Simple proportionality). We say that a k-
decision sequence D “ pN, Ā, C̄q is simple if A1 “ ¨ ¨ ¨ “

Ak, C1 “ ¨ ¨ ¨ “ Ck, and |A1pvq| “ 1 for all v P N .
Given a simple decision sequence D and a voter v P N ,
let #v denote the number of voters with identical prefer-
ences, i.e., #v “ |tv1 P N : Apv1q “ Apvqu|. A perpet-
ual voting rule R satisfies simple proportionality if for any
simple n-decision sequence D with |N | “ n it holds that
satnpv,RpDqq “ #v for every voter v P N .

Although this is a quite weak proportionality require-
ment, similar to weak proportionality in the apportionment
setting (Balinski and Young 1982), it is sufficiently strong
to reveal that some perpetual voting rules are not propor-
tional. For example, AV fails simple proportionality. On the
other hand, Perpetual PAV satisfies simple proportionality
(Lackner 2020), witnessing that win-based WAMs can sat-
isfy simple proportionality. Surprisingly, loss-based WAMs
are never proportional:
Theorem 2. There is no loss-based WAM that satisfies sim-
ple proportionality.

Proof. Assume for the sake of a contradiction that R is a
loss-based WAM that satisfies simple proportionality. Now,
consider for an arbitrary k ě 1 a simple k ` 1-decision
sequence pN, Ā, C̄q such that N “ tv1, . . . , vk`1u, C1 “

¨ ¨ ¨ “ Ck`1 “ ta, bu and v1 always votes tau and vi votes
tbu for all i P t2, . . . , k ` 1u. Because R satisfies simple
proportionality there are two possible cases in round k ` 1:
either a has won one or zero times. In the first case, the score
of a in round k ` 1 is fk´1p1q and the score of b is k ¨ fp1q
and b must win round k ` 1. Hence,

fk´1p1q ď k ¨ fp1q (1)

must hold. In the second case,

f i´1p1q ď k for all i ď k. (2)

Now consider a second simple k ` 1-decision sequence
pN, Ā1, C̄q where Ā1 is defined by v1, v2 always voting tau
and v3, . . . , vk`1 always voting tbu. Then, there must be a
round i where a wins the second time. In this round, the
score of b is pk ´ 1qfp1q and the score of a is at most
2 ¨ fk´1p1q. As we know that a wins in round i we have

1{2pk ´ 1qfp1q ď fk´1p1q. (3)
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In summary, we know that for all k ě 1 that either
1{2 kfp1q ď fkp1q ď pk ` 1qfp1q or 1{2 kfp1q ď fkp1q ď
k ` 1 holds. Consider a simple 2k-decision sequence
pN2, Ā2, C̄2q such that N “ tv1, . . . , vk, w1, . . . , wku,
C1 “ ¨ ¨ ¨ “ C|N | “ ta, b1, . . . , bku, vi always votes tau
and wi votes tbiu for all i P t1, . . . , ku. Furthermore, as-
sume w.l.o.g. that a tie-breaking is applied that always picks
bi over bj if i ă j. We claim that bk does not win any of
the 2k first rounds. By assumption, for all i ď k ´ 1, bi
must win before bk. Then, the score of a is k ¨ fk´1p1q
which is larger than 1{2 kpk ´ 1qfp1q by (3) while the
score of bk is at most f2k´1p1q. In the first case we have
f2k´1p1q ď 2kfp1q by (1). Clearly, for any k large enough,
2kfp1q ă 1{2pk2´kqfp1q. Hence, R does not satisfy simple
proportionality. In the second case, we have f2k´1p1q ď 2k
by (2). Furthermore, we know fp1q ě 1. Now, for any k
large enough, 2k ă 1{2pk2 ´ kq ď 1{2pk2 ´ kqfp1q. Hence,
R does not satisfy simple proportionality.

For win-based WAMs, we can precisely characterize
which rules satisfy simple proportionality.

Theorem 3. Let R be a win-based WAM. Furthermore, de-
fine the sequence G as Gp0q “ 1, Gp1q “ gp1q, Gp2q “
gpgp1qq, etc. Then, R satisfies simple proportionality if and
only if xGpxq ă py ` 1qGpyq for all integers x, y ě 0.

Examples of such rules include Perpetual PAV, i.e.,
G “ p1, 1{2, 1{3, . . . q, but also, for example, G “

p1, 1{c`1, 1{2c`1, . . . q for all c ě 1. We see that simple pro-
portionality is satisfied by many win-based WAMs. As we
will see in Section , this changes drastically with stronger
proportionality axioms.

Moreover, as it turns out, all win- and loss-based
WAMs fail another central desideratum of perpetual voting:
bounded dry spells. The bounded dry spells property guaran-
tees that every voter is satisfied with at least one decision in
a bounded number of rounds. This property is very impor-
tant for creating an incentive to participate in the decision
making process.

Definition 3 (Dry spells). Given a k-decision history H “

pN, Ā, C̄, w̄q, we say that a voter v P N has a dry spell of
length ` if there exists t ď k ´ ` such that sat tpv, w̄q “
sat t``pv, w̄q, i.e., voter v is not satisfied with any outcome
in rounds t` 1, . . . , t` `.

Let d be a function from N to N. A perpetual voting rule
R has a dry spell guarantee of d if for any decision sequence
D “ pN, Ā, C̄q and w̄ “ RpDq, no voter has a dry spell of
length dp|N |q. A perpetual voting rule R has bounded dry
spells if R has a dry spell guarantee of some d.

As win- and loss-based WAMs only consider the number
of wins—respectively losses—but not the round in which
they occur, a long winning streak can be followed by an ar-
bitrarily long dry spell.

Proposition 4. Every win-based and loss-based WAM has
unbounded dry spells.

In contrast, if we move beyond win- and loss-based
WAMs, we find perpetual rules that satisfy both simple pro-
portionality and bounded dry spells. Perpetual Consensus

has a dry spell guarantee of at most 1{4 ¨ pn2 ` 3nq (Lackner
2020). Here, we show a tight bound for Perpetual Phragmén:

Proposition 5. Perpetual Phragmén satisfies simple propor-
tionality, and has a dry spell guarantee of 2n´1 (this bound
is tight).

Proportionality in Perpetual Voting
Simple proportionality, as the name implies, is a very rudi-
mentary notion of proportionality. In particular, it requires
identical preferences in all rounds. We will now significantly
weaken this assumption and introduce proportionality ax-
ioms that are applicable in more dynamic settings.

Let us first define closed groups, which are groups with
identical preferences that have no overlapping interests with
other voters.

Definition 4. Given a k-decision sequence D “ pN, Ā, C̄q,
we say that a group N 1 Ď N is closed if for every v P N 1,
w P N , and i P t1, . . . , ku it holds that (i) Aipvq “ Aipwq
if w P N 1 and (ii) Aipvq XAipwq “ H otherwise.

The following axioms establish the minimum and maxi-
mum influence of a closed group on a decision sequence.

Definition 5 (Perpetual lower/upper quota for closed
groups). A perpetual voting rule R satisfies perpetual lower
quota for closed groups (LQC) if, for every k-decision se-
quence D, it holds for every voter v P N who is part of a
closed group N 1 that satkpv,RpDqq ě

Y

k ¨ |N
1
|

n

]

.
A perpetual voting rule R satisfies perpetual upper quota

for closed groups (UQC) if, for every k-decision sequence
D, it holds for every voter v P N who is part of a closed
group N 1 that satkpv,RpDqq ď

Q

k ¨ |N
1
|

n

U

.

LQC and UQC identify groups that deserve representation
(due to their size and uniformity). These groups should have
a roughly proportional influence on the outcome. LQC sets
a lower bar for their influence, UQC an upper bar.3

Remark 1. When applying the definitions of LQC and UQC
to simple k-decision sequences with k “ n (Definition 2),
we observe that

Q

k ¨ |N
1
|

n

U

“

Y

k ¨ |N
1
|

n

]

“ |N 1|. Thus, both
LQC and UQC imply simple proportionality.

As it turns out, these stronger notions of proportionality
cannot be satisfied with a win-based WAM.

Theorem 6. Every win-based WAM fails both LQC and
UQC.

Proof. Let us first show that every win-based WAM fails
UQC. Consider an arbitrary win-based WAM defined by
the function g. Now, we construct a simple 2-decision se-
quence with 2N voters. In both rounds, for i P t1, . . . , Nu
voter i approves ci, and the voters N ` 1, . . . , 2N approve
alternative cN`1. In round 1, alternative cN`1 wins with

3We remark that LQC is strictly weaker than perpetual lower
quota as introduced by Lackner (2020) (which is too strong to be
satisfiable in general). The same holds for UQC and perpetual up-
per quota (defined analogously).
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sc1pcN`1q “ N . In the second round, the winning alterna-
tive c must be chosen so that sat2pv, pcN`1, cqq ď

Q

2 ¨ #v
2N

U

for all v P N . If v P tN ` 1, . . . , 2Nu it holds that
Q

k ¨ #vn

U

“ 1, hence cN`1 must not win a second time. Con-
sequently N ¨ gp1q “ sc2pcN`1q ă sc2pc1q “ 1. As N can
be chosen arbitrarily large, we conclude that gp1q “ 0. This,
however, contradicts the definition of win-based WAMs,
where gpxq ą 0 is required.4

Now, we show that every win-based WAM fails LQC. Fix
a function g defining a win-based WAM. By Theorem 3, we
know that gp1q ă gp0q “ 1. Let k “

Q

1
gp1q

U

. We construct a
k ` 1-decision sequence as follows. There are k ` 1 voters.
In each round, the set of alternatives is C “ tc1, . . . , ck`1u.
The approval profiles are defined as follows:

voters
1 2 . . . k k ` 1

A1 “ ¨ ¨ ¨ “ Ak tc1u tc2u . . . tcku tck`1u

Ak`1 tc1u tc1u . . . tc1u tck`1u

We assume that ties are broken in favour of alternatives with
smaller index. Thus, in the first round alternative c1 is win-
ning, in the second round c2 is winning, etc., until ck wins in
round k. In round k`1, alternative c1 is approved by voters 1
to k and thus sck`1pc1q “ k ¨ gp1q. Further, sck`1pck`1q “

gp0q “ 1. Since sck`1pc1q “ k ¨ gp1q “
Q

1
gp1q

U

¨ gp1q ą 1,
alternative c1 is winning. This violates LQC since voter k`1
is a closed group with satisfaction 0 but deserving a satisfac-
tion of at least

Q

pk ` 1q ¨ 1
k`1

U

“ 1.

Next, we will show that Perpetual Consensus and Perpet-
ual Phragmén are proportional in a different sense, as the
former satisfies UQC while the later satisfies LQC. We be-
gin with Perpetual Consensus.
Theorem 7. Perpetual Consensus satisfies UQC but fails
LQC.

Before looking at Perpetual Phragmén, we will strengthen
LQC by introducing the concept of perpetual priceability.
This is motivated by the priceability property from the multi-
winner voting setting which was introduced by Peters and
Skowron (2020).5 We first define price systems.
Definition 6. Given a k-decision sequence D and an out-
come w̄ “ pw1, . . . , wkq, we say w̄ is supported by the
price system pB, tpiuiďkq where the real number B ą 0
is the budget that each voter starts with and for each i P
t1, . . . , ku, pi is a function from N ˆ Ci to r0, 1s such that
the following properties hold:

4Observe that even if we would change the definition of win-
based WAMs to allow g-functions with 0-values, such rules would
never satisfy simple proportionality, as follows immediately from
Theorem 3 with x “ 1 and y “ 2.

5Priceability is a rather strong proportionality axiom in the
multi-winner setting. It implies Proportional Justified Representa-
tion (Sánchez-Fernández et al. 2017) and is incomparable to Ex-
tended Justified Representation (Aziz et al. 2017).

(P1) pipv, cq “ 0 if c R Aipvq, i.e., no voter pays for an
alternative that she does not approve.

(P2)
řk
j“1

ř

cPCj
pjpv, cq ď B, i.e., voters cannot spend

more than their budget.
(P3)

ř

vPN pipv, wiq “ 1 for i P t1, . . . , ku, i.e., each al-
ternative included in w̄ gathers a total payment of 1.6

(P4)
ř

vPN pipv, wq “ 0 for i P t1, . . . , ku and w ‰ wi,
i.e., alternatives not in w̄ do not receive any payments.

These four conditions are essentially the same as for
priceability in multi-winner voting. In this setting, a fifth
condition is present which states that there is no group of
voters that supports a common alternative and has a remain-
ing budget of more than 1. Unfortunately, translating this
requirement directly into perpetual voting does not work, as
the following example shows:
Example 3. Consider the following 2-decision sequence:

voters
1 2 3 4 5 6

rounds A1 tau tbu tcu tdu teu tfu
A2 tau tau tau tau tbu tbu

Furthermore, let w̄ be an arbitrary outcome for this de-
cision sequence. Assume that there exists a price system
pB, tpiuiďkq supporting w̄. By construction, the winning al-
ternative in the first round has only one supporter. Therefore,
the budget of each voter (B) must be at least 1. However,
then after the second round, at least two supporters of the
non-winning alternative still have a budget of 1, together
strictly more than the price to pay for an alternative (1).

This shows that we need a different minimality condition
to use priceability in perpetual voting. Due to the sequen-
tial nature of perpetual voting, it turns out that an inductive
minimality condition works well.
Definition 7. Given a k-decision sequence D and an out-
come w̄ “ pw1, . . . , wkq, we say w̄ is supported by a mini-
mal price system pB, tpiuiďkq if there exists aB˚ ď B such
that the following two conditions hold:
(P5) there exists a minimal price system pB˚, tp˚i uiďk´1q

that supports pw1, . . . , wk´1q
7

(P6) there are no B1, w1k and p1k such that B˚ ď B1 ă B
and pB1, tpiuiďk´1 Y tp

1
kuq is a price system supporting

pw1, . . . , wk´1, w
1
kq.

A perpetual voting rule R satisfies perpetual priceability if
for any k-decision sequence D with RpDq “ w̄ there exists
a minimal price system pB, tpvuvPN q that supports w̄.

Using this definition, we can show that perpetual price-
ability implies LQC.
Proposition 8. Perpetual priceability implies LQC.

6Priceability in multi-winner voting is defined slightly differ-
ently by fixing the budget of each voter at 1 and varying the price of
an alternative. Both definitions are equivalent in the multi-winner
setting. The definition with variable budget is better suited for per-
petual voting as it allows to extend price-systems to future rounds.

7We assume that p0,Hq is a minimal price system supporting
the empty sequence.
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Proof. Let R be a perpetual voting rule that satisfies perpet-
ual priceability. We proceed by contradiction. To this end, let
D be a k-decision sequence, such that RpDq violates LQC
and let N 1 be a closed group that witnesses this violation.
Furthermore, let RpDq “ pw1, . . . , wkq and let pB, tpiuiďkq
be a minimal price system that supports pw1, . . . , wkq. We
first observe that we must have B ě k{n, as otherwise it
would not be possible to pay for k alternatives. Furthermore,
if B “ k{n, then no budget is left after round k, formally
řk
j“1

ř

cPCj
pjpv, cq “ B for all v P N . As N 1 is a closed

group, we know Aipvq “ Aipwq for all v, w P N 1 and
i ď k. Furthermore, we know that if c R Aipvq, then also
pipv, cq “ 0. Therefore, for every voter in v P N 1 we have
řk
j“1

ř

cPAjpcq
pjpv, cq “ |N

1| ¨ k{n. As money can only be
spent on alternatives that are elected and every alternative
costs 1, this means every voter in N 1 approves of at least
|N 1| ¨ k{n alternatives in RpDq and hence LQC is is satisfied.

Let us now assume B ą k{n. As we assume that LQC is
violated, there is a voter v P N 1 such that satkpv,RpDqq ă
Y

k ¨ |N
1
|

n

]

. In particular, that means that only
Y

k ¨ |N
1
|

n

]

´

1 alternatives supported by the closed group have been
elected. Then we know the following for the budget that the
voters in N 1 have left after round k:

ÿ

vPN 1

˜

B ´
ÿ

iďk

ÿ

cPCi

pipv, cq

¸

ě

|N 1|B ´

ˆZ

k ¨
|N 1|

n

^

´ 1

˙

ą

|N 1|k{n´

Z

k ¨
|N 1|

n

^

` 1 ě 1 (4)

Hence there is an ε such that the budget of the voters in N 1
is 1` ε. By the definition of minimal price systems, for ev-
ery l ď k, there is a price system pBl´1, tp

l´1
i uiďl´1q that

witnesses the minimality of the price system pBl, tp
l
iuiďlq,

where pBk, tpki uiďkq “ pB, tpiuiďkq.
We claim that B1 ă B. Observe that in the first round

B1 ď 1{|N 1| must hold, as with a budget of 1{|N 1| the voters
in N 1 can already afford one of the alternatives that they
jointly approve; this would contradict minimality in round 1.
Moreover, we can assume that k ¨ |N 1|{n ě 1 as otherwise
LQC is vacously satisfied. It follows that k ě n{|N 1|. Finally,
by assumption B ą k{n. Put together, we have

B1 ď
1

|N 1|
“

n

n|N 1|
ď
k

n
ă B.

Now let l˚ be the largest index l for which Bl ă B.
We claim that there is a B1 with Bl˚ ď B1 ă Bl˚`1 “

B such that there are w1 P Cl˚`1 and p1l˚`1 such that
pB1, tpl

˚

i uiďl˚ Y tp1l˚`1q is a price system supporting
pw1, . . . , wl˚ , w

1q. This would be a contradiction to the min-
imality of pBl˚`1, tp

l˚`1
i uiďl˚`1q.

Let w1 be an alternative supported by the voters in the
closed group in round l˚ ` 1. Furthermore, let B1 “
maxpB ´ ε{|N 1|, Bl˚q. Observe that Bl˚ ď B1 ă B.

SP BD LQC UQC

AV ˆ‹ 8‹ ˆ ˆ

Per. Unit-Cost ˆ‹ 8‹ ˆ ˆ

Per. PAV 3‹ 8‹ ˆ ˆ

Per. Consensus 3‹ ď n2
`3n
4

‹ ˆ 3
Per. Phragmén 3 2n´ 1 3 ˆ

Table 1: Axiomatic results for selected perpetual voting
rules: bounded dry spells (BD), simple proportionality (SP),
and lower/upper quota for closed groups (LQC/UQC). En-
tries marked with ‹ are due to Lackner (2020).

Now, define p1l˚`1 such that
ř

vPN 1 p
1
l˚`1pv, w

1q “ 1 and
p1l˚`1pv

1, cq “ 0 whenever v1 R N 1 or c ‰ w1. This is
possible, because the voters in N 1 have at least a budget of
1 in round l˚ ` 1. Hence this is a price system that sup-
ports pw1, . . . , wk´1, w

1q. Contradiction to the minimality
of pB, tpiuiďkq.

It can be shown that one can always turn the load balanc-
ing procedure of Perpetual Phragmén into a minimal price
system. Therefore it satisfies perpetual priceability.

Proposition 9. Perpetual Phragmén satisfies perpetual
priceability.

Finally, we observe that perpetual priceability is incom-
patible with UQC.

Proposition 10. A perpetual voting rule cannot satisfy both
perpetual priceability and UQC.

Corollary 11. Perpetual Phragmén satisfies LQC but fails
UQC.

Discussion and Research Directions
We provide a summary of our axiomatic results in Table 1.
Two rules appear to be most promising: Perpetual Consen-
sus and Perpetual Phragmén. Their most notable difference
is in which sense they are proportional: Perpetual Phragmén
satisfies a lower quota axiom (guaranteeing groups a cer-
tain satisfaction), whereas Perpetual Consensus satisfies an
upper quota axiom (limiting excessive influence of groups
on the decision process). Moreover, we have seen that the
simplicity of win- and loss-based WAMs is too restrictive
to achieve proportional outcomes. Perpetual Consensus or
Perpetual Phragmén are more proportional but also concep-
tually more difficult. Whether the conceptual complexity of
these rules is problematic can only be answered in the con-
text of a concrete application.

A natural open question is whether a voting rule exists
that satisfies both LQC and UQC. The Quota apportion-
ment method of Balinski and Young (1975) may be a useful
starting point. Note that such a rule cannot satisfy perpetual
priceability (Proposition 10). Currently, Perpetual Phragmén
is the only perpetual voting rule satisfying perpetual price-
ability. Another candidate for this property is an an adaption
of the minimax support method (Fernández et al. 2022) to
the perpetual setting.
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von Gottlob Frege, 297–313. Mentis.
Harrenstein, P.; Lackner, M.; and Lackner, M. 2020. A
Mathematical Analysis of an Election System Proposed by
Gottlob Frege. Erkenntnis.
Kash, I.; Procaccia, A. D.; and Shah, N. 2014. No agent left
behind: Dynamic fair division of multiple resources. Journal
of Artificial Intelligence Research, 51: 579–603.
Lackner, M. 2020. Perpetual Voting: Fairness in Long-Term
Decision Making. In Proceedings of the 34th AAAI Confer-
ence on Artificial Intelligence (AAAI 2020). AAAI Press.
Lackner, M.; Maly, J.; and Rey, S. 2021. Fairness in Long-
Term Participatory Budgeting. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence, (IJ-
CAI 2021), 299–305. ijcai.org.
Lackner, M.; and Skowron, P. 2018. Approval-Based Multi-
Winner Rules and Strategic Voting. In Proceedings of the
27th International Joint Conference on Artificial Intelli-
gence (IJCAI 2018), 340–436. ijcai.org.
Lackner, M.; and Skowron, P. 2023. Multi-Winner Voting
with Approval Preferences. Springer.
Lang, J.; and Xia, L. 2009. Sequential composition of voting
rules in multi-issue domains. Mathematical Social Sciences,
57(3): 304–324.
Peters, D.; and Skowron, P. 2020. Proportionality and the
limits of welfarism. In Proceedings of the 21st ACM Confer-
ence on Economics and Computation (EC 2020), 793–794.
Phragmén, E. 1894. Sur une méthode nouvelle pour
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des partis. Öfversigt af Kongliga Vetenskaps-Akademiens
Förhandlingar, 51(3): 133–137.
Phragmén, E. 1895. Proportionella val. En valteknisk studie.
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Proof Details from Section
Proposition 1. Perpetual Phragmén is not equivalent to any
WAM and is computable in polynomial time.

Proof. To prove the first statement, we consider a decision
sequence with 7 voters. In the first two rounds, the prefer-
ences are

A1 “ A2 “ ptau, tau, tau, tbu, tbu, tbu, tcuq.

Thus, a wins in the first round (we assume al-
phabetic tiebreaking) and the corresponding loads are
p 13 ,

1
3 ,

1
3 , 0, 0, 0, 0q. In the second round b wins and the loads

are p 13 , . . . ,
1
3 , 0q. Assume towards a contradiction that Per-

petual Phragmén is a WAM. We can thus assign weights in
some fashion; let these be x1, . . . , x7.

We now consider several decision instances for round
three. First, if the preferences are

A3 “ ptau, tbu, tcu, tdu, teu, tfu, ta, b, c, d, e, fuq,

then all alternatives are tied. Thus, we can conclude that
x1 “ x2 “ x3 “ x4 “ x5 “ x6; let x “ x1 “ ¨ ¨ ¨ “ x6
and y “ x7. Second, if the preferences are

A13 “ ptau, tau, tbu, tcu, tdu, teu, tfuq,

then a wins (the load of voter 1 and 2 would increase to 5
6 ).

Thus, we infer that 2x ą y. Finally, we consider

A23 “ ptau, tau, tau, tbu, tcu, tcuq.

Here a and c are tied; in both cases the load of the corre-
sponding voters (voters 1, 2, 3 for a, voters 5, 6 for c) would
increase to 2

3 . Thus, it holds that 3x “ x ` y and in turn
2x “ y. This contradicts our previous result that 2x ą y. We
conclude that Perpetual Phragmén cannot be “simulated” by
a WAM.

Next, we show that Perpetual Phragmén is computable in
polynomial time. To calculate `k`1pvq for all v P N , we
have to first find the set of voters N 1 for which `k`1pN

1q is
minimal. Recall that

`k`1pN
1q “

1`
ř

vPN 1 `kpvq

|N 1|
.

LetNpcq “ tv P N : Apvq “ tcuu for c P C. We will calcu-
late for each alternative c P Ck`1 the subset N 1pcq Ď Npcq
that has a minimal `k`1pN

1pcqq among all subsets of Npcq.
To do this we sort voters in Npcq by their load: `kpv1q ă
`kpv2q ă ¨ ¨ ¨ ă `kpvsq with Npcq “ tv1, . . . , vsu.

We claim thatN 1pcq is an interval containing v1 in this or-
der, i.e., there exists a t ď s such that N 1pcq “ tv1, . . . , vtu.
Towards a contradiction, assume that N 1pcq does contain vt
but not vr with r ă t. Then clearly replacing `k`1pN

1pcqq ą
`k`1pN

1pcq ` vt ´ vr); a contradiction.
SinceN 1pcq consists of an interval where voters are sorted

by load, we can determine the optimal value by adding vot-
ers one by one (starting with the lowest-load voter, i.e., v1).
Then, we compare N 1pcq for all c P Ck`1 and thus find N 1
with minimal `k`1pN

1q. This procedure requires polynomial
time.

Proof Details from Section
First, observe that win- and loss-based WAMs have the fol-
lowing very useful property:

Lemma 12. Let R be a win-based or a loss-based WAM
and let pN, Ā, C̄q and pN˚, Ā˚, C̄˚q be two k-decision se-
quences such that and wi “ w˚i for all i under R. Then for
all voters v P N the weight of v after round k is the same
for the decision sequences pN, Ā, C̄q and pN ` N˚, Ā `
Ā˚, C̄` C̄˚q. Here pN `N˚, Ā` Ā˚, C̄` C̄˚q denotes the
decision sequence with alternatives C Y C˚, N ` N˚ vot-
ers where the first N voters vote like the voters in pN, Ā, C̄q
and the voters from N ` 1 to N `N˚ vote like the voters in
pN˚, Ā˚, C̄˚q.

Proof. We prove the lemma by induction over k. By defini-
tion the weight of all voters in the first round is 1. Now as-
sume that the weights of all voters are the same in pN, Ā, C̄q
resp. pN˚, Ā˚, C̄˚q and pN ` N˚, Ā ` Ā˚, C̄ ` C̄˚q in
round k ´ 1. Let w be the winner in round k ´ 1 for
pN, Ā, C̄q and pN˚, Ā˚, C̄˚q. Then, for every alternative c P
Ck´1 Y C˚k`1 we have sck´1pwq ą sck´1pcq in pN, Ā, C̄q
and pN˚, Ā˚, C̄˚q (if c R Ck´1, then we set sck´1pcq “ 0 in
pN, Ā, C̄q and the same for pN˚, Ā˚, C̄˚q.) As the weigth of
all voters is the same in pN, Ā, C̄q resp. pN˚, Ā˚, C̄˚q and
pN `N˚, Ā` Ā˚, C̄ ` C̄˚q in round k´ 1, the score of all
alternatives in pN`N˚, Ā` Ā˚, C̄` C̄˚q is just the sum of
their scores in pN, Ā, C̄q and pN˚, Ā˚, C̄˚q. Therefore, we
have sck´1pwq ą sck´1pcq in pN `N˚, Ā` Ā˚, C̄ ` C̄˚q
for all c P Ck´1 Y C˚k´1, hence w is the winner in round
k´ 1. However, then the weight of any voter v in round k is
either

αkpvq “

"

αk´1pvq if w R Ak´1pvq,

gpαk´1pvqq if w P Ak´1pvq.

or

αkpvq “

"

fpαk´1pvqq if w R Ak´1pvq,

αk´1pvq if w P Ak´1pvq.

where αk´1,Ak´1pvq and w are the same for pN, Ā, C̄q and
pN ` N˚, Ā ` Ā˚, C̄ ` C̄˚q. Hence, αkpvq is the same in
pN, Ā, C̄q and pN`N˚, Ā`Ā˚, C̄`C̄˚q for all v P N .

Theorem 3. Let R be a win-based WAM. Furthermore, de-
fine the sequence G as Gp0q “ 1, Gp1q “ gp1q, Gp2q “
gpgp1qq, etc. Then, R satisfies simple proportionality if and
only if xGpxq ă py ` 1qGpyq for all integers x, y ě 0.

Proof. Assume that xGpxq ă py ` 1qGpyq for all integers
x, y ě 0. If we set y “ x´ 1, we obtain

Gpxq ă Gpx´ 1q (5)

Towards a contradiction, assume that the rule fails sim-
ple proportionality for some simple |N |-decision sequence
pN, Ā, C̄q and corresponding |N |-outcome w̄. Now, let
k ` 1 be the first round such that there is a voter v with
satk`1pv, w̄q “ #v ` 1. Such a round must exist, be-
cause simple proportionality is violated. There also ex-
ists a voter v1 with satk`1pv

1, w̄q ă #v1. Let #v “

x and #v1 “ y ` 1. Observe that, by assumption,
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satkpv, w̄q “ #v. As v wins in round k ` 1, it holds that
xGpsatkpv, w̄qq “ xGpxq ě py ` 1q ¨ Gpsatkpv

1, w̄qq.
Since satkpv

1, w̄q “ satk`1pv
1, w̄q ă #v1 “ y ` 1,

by (5) we have Gpsatkpv1, w̄qq ě Gpyq. Thus, xGpxq ě
y ¨Gpsatkpv

1, w̄qq ě py ` 1qGpyq, a contradiction.
For the other direction, assume that simple proportionality

holds. First, let us show that Gpxq ă Gpx´ 1q. Consider
a simple p2xq-simple profile with x voters approving some
alternative and the remaining x voters approving some other
alternative. In round 2x, one of these groups has satisfaction
x´ 1, the other x. By simple proportionality, the group with
satisfaction x ´ 1 must win (independent of tiebreaking).
Thus, xGpxq ă xGpx´ 1q, i.e., Gpxq ă Gpx´ 1q.

Next, we show that xGpxq ă py` 1qGpwyq. Consider an
px`y`1q-simple profile with two groups: x voters approv-
ing one alternative, y` 1 voters approve another alternative.
Consider the round k where the latter group wins for the
py`1q-st time (this has to happen due to simple proportion-
ality). Let x1 ď x be the satisfaction of the former group in
round k. Assuming that tiebreaking is against this group, it
holds that py ` 1qGpyq ą xGpx1q ě xGpxq.

Proposition 4. Every win-based and loss-based WAM has
unbounded dry spells.

Proof. Let R be either a win-based or a loss-based WAM,
i.e., either gpxq “ x or fpxq “ x holds. We assume for the
sake of a contradiction that there is a function d that bounds
the dry spells of R.

First, assume gpxq “ x and there is a value x˚ (that can
appear) such that fpx˚q “ x˚ [fpxq “ x and there is a
value x˚ (that can appear) such that gpx˚q “ x˚]. Then, let
pN, Ā, C̄q be a k-decision sequence such that there is a voter
that has weight x˚ in round k` 1. We consider the decision
sequence that consist of three copies of pN, Ā, C̄q. Then, by
Lemma 12 there are three voters v1, v2, v3 with weight x˚
in round k ` 1. Now, consider that in the next dp3|N |q ` 1
rounds there are two alternatives ta, bu, voter v1 votes for
an alternative a, voter v2 and v3 vote b and every other voter
votes ta, bu. Then the score of alternative a is always x˚`V ,
where V is the weight of the voters in V ztv1, v2, v3u, and
the score of alternative b is always 2x˚ ` V . Therefore, b
has a higher score in every election and v1 has a dry spell of
dp3|N |q ` 1 rounds. A contradiction.

Now, assume that gpxq “ x and fpxq ą x [or fpxq “ x
and gpxq ă x] on all values x that can appear as weights
of voters. Now consider an election with two voters v1 and
v2, two alternatives a and b and 2dp3q ` 3 rounds, where v1
always votes a and v2 always votes b. Then, either v1 or v2
looses at least dp3q ` 2 rounds. We assume w.l.o.g. that v1
looses dp3q`2 rounds. Then, the weight of voter v1 in round
2dp3q ` 4 is fdp3q`2p1q [gdp3q`1p1q]. Now, we add another
voter v3 that votes ta, bu in the first 2dp3q`3 rounds. Hence,
she wins in every round and his weight in round 2dp3q ` 4
is 1 [g2dp3q`3p1q]. Then, assume that in the next dp3q ` 1
rounds voters v1 and v2 vote a and voter v3 votes b. We claim
that voter v3 wins non of these dp3q ` 1 rounds: Alterna-
tive a always has a score of at least fdp3q`2p1q [g2dp3q`2p1q],
whereas alternative b has a score of at most fdp3q`1p1q

[g2dp3q`3p1q]. As fpxq ą x [gpxq ă x], alternative a has a
higher score in every election. Therefore, v3 has a dry spell
of dp3q ` 1, a contradiction.

Proposition 5. Perpetual Phragmén satisfies simple propor-
tionality, and has a dry spell guarantee of 2n´1 (this bound
is tight).

Proof. 1. Simple proportionality follows immediately from
the fact that Phragmén’s sequential rule (the approval-
based multi-winner rule) behaves like the D’Hondt
method in the apportionment setting (see, e.g., (Brill,
Laslier, and Skowron 2017)).

2. First, observe that the minimum load and maximum load
of voters cannot differ by more than 1; otherwise a dif-
ferent outcome (in favour of those with a smaller load)
would have been chosen previously. Further, each round
the total load increases by 1. Towards a contradiction, as-
sume that a voter v is not satisfied with a sequence of
2n ´ 1 decisions. Let α be the load of voter v during
these 2n´ 1 rounds. Further, let N 1 “ Nztvu. The total
load the voters in N 1 is at least pn ´ 1qpα ´ 1q before
these rounds, and at least pn´ 1qpα´ 1q ` 2n´ 1 after
these 2n ´ 1 rounds. Thus, the average load of voters in
N 1 is at least α`1` 1

n´1 . Hence, there is one voter with
a load strictly larger than α ` 1, a contradiction. Hence,
we obtain a dry spell guarantee of 2n´ 1.
To see that this bound is tight, consider the following
decision sequence with n voters. All voters have dis-
joint approval sets. In round 1, tiebreaking in favour of
voter n’s alternative, in later rounds it is always against
voter n. Voter n loses in rounds 2, . . . , 2n ´ 1, but wins
in round 2n. This is a dry spell of length 2n´ 2.

Proof Details from Section
Theorem 7. Perpetual Consensus satisfies UQC but fails
LQC.

Proof. To see that Perpetual Consensus satisfies UQC, let
D “ pN, Ā, C̄q be a k-decision sequence andN 1 be a closed
group. Assume towards a contradiction that D witnesses that
Perpetual Consensus fails UQC and that k is the shortest de-
cision sequence for which this can happen. Consequently,
for v P N 1, satkpv,RpDqq ą

Q

k ¨ |N
1
|

n

U

. We can assume
without loss of generality that v was satisfied with the deci-
sion in round k (i.e., satkpv,RpDqq “ satk´1pv,RpDqq `
1), because otherwise we could consider a pk ´ 1q-decision
sequence witnessing that Perpetual Consensus fails UQC.
Let x “

Q

k ¨ |N
1
|

n

U

. Thus, satkpv,RpDqq “ x ` 1. Let us
calculate the weight of v in round k:

αkpvq “ 1` ¨ ¨ ¨ ` 1
looooomooooon

k rounds

´
x ¨ n

|N 1|
loomoon

v has won x times

ď k ´ k “ 0.

We see that for v P N 1, αkpvq “ 0 and hence N 1 has a
total weight of ď 0 in round k. As N 1 is a closed group,
no alternatives approved by a voter in N 1 will be chosen
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(some other alternative will have a positive weight). This
contradicts our assumption that the satisfaction of voters in
N 1 increases in round k.

To show that Perpetual Consensus fails LQC, we con-
struct a k-decision sequence with five closed groups. The
five groups consist of 1, 3, 5, 18, and 27 voters, respec-
tively. These are all voters, 54 in total. By definition of a
closed group, each group has distinct alternatives they ap-
prove. We consider k “ 30. Perpetual consensus produces
an outcome such that alternatives from the first group win
once, from the second group twice, from the third group
three times, from the fourth ten times, and from the fifth
group 14 times. We see that produces the apportionment
a “ p1, 2, 3, 10, 14q. For voters v in the fifth group we have
sat30pv,RpDqq “ 14 ă

X

30 ¨ 1530
\

, thus violating LQC.

Proposition 9. Perpetual Phragmén satisfies perpetual
priceability.

Proof. We show the result by proving that the load distribu-
tion produced by Perpetual Phragmén can be turned into a
minimal price system supporting the outcome of Perpetual
Phragmén. To this end, let D be a k-decision sequence, let
w̄ “ pw1, . . . , wkq be the outcome of Perpetual Phragmén
for D and let `1, . . . , `k be the load distribution produced by
Perpetual Phragmén. Then we claim that the following is a
minimal price system that supports w̄:

B “ max
vPN

p`kpvqq

and, for all i ď k,

pipv, cq “ `ipvq ´ `pvqi´1.

First we show that pB, tpiuiďkq is a price system. For (P1),
we observe that in any round i the load of a voter v that
does not approve wi cannot increase. Hence, pipv, wiq “
`ipvq´ `i´1pvq “ `i´1pvq´ `i´1pvq “ 0. For (P2), we note
that for all v

k
ÿ

j“1

ÿ

cPCj

pjpv, cq “
k
ÿ

j“1

`ipvq ´ `pvqi´1 “

`kpvq ´ `0pvq “ `kpvq ď B.

Now consider (P3). Consider round i and let N 1 be the set
of voters v for which `ipvq ą `i´1pvq holds. Then, by defi-
nition of Perpetual Phragmén, for all v P N 1 we have

`ipN
1q “

1`
ř

vPN 1 `i´1pvq

|N 1|
.

Therefore,
ÿ

vPN

pipv, wiq “
ÿ

vPN 1

`ipvq ´ `i´1pvq “

|N 1|
1`

ř

vPN 1 `i´1pvq

|N 1|
´

ÿ

vPN 1

`i´1pvq “ 1.

Finally, (P4) holds by definition.
It remains to show that pB, tpiuiďkq is a minimal price

system. For this, we proceed by induction. First, assume D

is a 1-decision sequence. For the sake of a contradiction,
assume pB1, p11q is a price system supporting pw1qwithB1 ă
B. Let B1 be the minimal budget for which such a price
system exists. Then, we can assume that for all v P N we
have either p11pv, w

1q “ 0 or p11pv, w
1q “ B1. Thus, `11pvq “

p11pv, w
1q is a valid load distribution and `11pvq ă `1pvq. This

contradicts the assumption that `1 was the load distribution
chosen by Perpetual Phragmén.

Now, assume that for all pk ´ 1q-decision sequences the
price system generated from the load distribution is minimal
and consider a k decision sequence D. Let pB, tp˚i uiďkq be
the price system generated by running Perpetual Phragmén
on D and let pB˚, tp˚i uiďk´1q be the price system generated
by running Perpetual Phragmén on the first k ´ 1 rounds of
D. By construction pi “ p˚i for all i ď k ´ 1. Furthermore,
we know by the induction hypothesis that pB˚, tp˚i uiďk´1q

is a minimal price system.
First, assume B˚ “ B. In that case pB, tpiuiďkq is also

trivially a minimal price system. Now assume B˚ ă B. For
the sake of a contradiction, assume that there are B1, w1k and
p1k such that B˚ ď B1 ă B and pB1, tpiuiďk´1 Y tp

1
kuq

is a price system supporting pw1, . . . , wk´1, w
1
kq. Let B1 the

minimal budget for which this is possible. Let us first as-
sume that B˚ “ B1. Observe that for all v P N we have
ř

iďk´1

ř

cPCi
pipv, cq “ `k´1pvq by construction. Then,

by (P1), we know

p1kpv, w
1q `

ÿ

iďk´1

ÿ

cPCi

pipv, cq “ p1kpv, w
1q ` `k´1pvq

ď B1 “ max
vPN

p`k´1pvqq.

As
ř

vPN p
1
kpv, w

1q “ 1 this implies that there is
a load distribution `1k such that maxvPN p`

1
kpvqq “

maxvPN p`k´1pvqq “ B˚ ă B “ maxvPN p`kpvqq. How-
ever, this contradicts the assumption that `k was chosen as a
load distribution by Perpetual Phragmén.

Now assume B˚ ă B1. We claim that we can turn p1k into
a load distribution `1k with lower load than `k as follows. For
all v P N we have:

`1kpvq “ p1kpv, w
1q `

ÿ

iďk´1

ÿ

cPCi

pipv, cq.

In particular, that means `k´1pvq “ `1kpvq for all v such that
p1kpv, w

1q “ 0. Let N 1 “ tv | p1kpv, w
1q ‰ 0u. We claim that

for all v P N 1 we have `1kpvq “ B1. Otherwise, we could
construct a price system with lower budget as before. From
this, we get

|N 1|`1kpvq “
ÿ

vPN 1

`1kpvq

“
ÿ

vPN 1

˜

p1kpv, w
1q `

ÿ

iďk´1

ÿ

cPCi

pipv, cq

¸

“
ÿ

vPN 1

`

p1kpv, w
1q ` `k´1pvq

˘

“ 1`
ÿ

vPN 1

`k´1pvq
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and hence `1kpvq “
1`

ř

vPN1 `k´1pvq

|N 1| . This shows that `1kpvq
is indeed a valid load distribution. As B1 ă B, `1k is a bet-
ter load distribution than `k. This is a contradiction to the
assumption that Perpetual Phragmén has chosen load distri-
bution `k.

Proposition 10. A perpetual voting rule cannot satisfy both
perpetual priceability and UQC.

Proof. Consider the following 2-decision sequence. Let
N “ t1, . . . , 20u, C1 “ C2 “ tc, d1, . . . , d10u. Further
let

A1pvq “

"

tdvu if v P t1, . . . , 10u,

tcu if v P t11, . . . , 20u.

and A2 “ A1. Assume towards a contradiction that R is a
perpetual voting rule satisfying both perpetual priceability
and UQC. Let RpDq “ pw1, w2q. Towards a contradiction,
assume that w1 P td1, . . . , d10u. As d1, . . . , d10 is approved
by only one voter each and

ř

vPN pvp1, w1q “ 1 (Condi-
tion P3), we know that B ě 1 (Condition P2). This vio-
lates (P6), since the alternative c can be supported by a price
system with B1 “ 0.1. Thus, w1 “ c. Now, in round 2,
assume again that w2 P td1, . . . , d10u. By the same argu-
ment as before, we infer that B ě 1. This violates (P6),
since the outcome pc, cq can be supported by a price sys-
tem with B1 “ 0.2. Thus, RpDq “ pc, cq. Now, note that
N 1 “ t11, . . . , 20u is a closed group. Hence, for v P N 1,
UQC implies that sat2pv,RpDqq ď

Q

k ¨ |N
1
|

n

U

“ 1. How-
ever, sat2pv, pc, cqq “ 2, a contradiction.
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